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Abstract—Making decisions on the soccer field, like choosing a
direction for a Kick, requires the robot to have a representation of
the objects in its surroundings. Dynamic objects involved in the
immediate interaction, such as a ball or obstacles, are typically
represented by local models. Static objects like lines or goals are
represented implicitly as part of a map, paired with the estimated
position of the robot within the map. When choosing a direction
for a Kkick, the robot essentially aims to control the relationship
between the ball and other objects, such as the goal (the ball
needs to be inside), the outer line (the ball should not cross and
leave the field), or between the ball and an obstacle (the ball
should not collide). The interactions between the objects in the
local frame can usually be estimated with a high accuracy because
the objects are observed close to each other in time and might
even be in the same image. The interactions between the ball and
the static objects, like goals, are typically done in the global frame
(global field coordinates) and involve computations based on local
(ball model) and global models (self-localization). For accurate
decisions, this would require high accuracy in the estimation of
the robot’s location on the field, at least in the proximity of
important objects like goals or outer lines. On the one hand, this
can be challenging to achieve on a robot with limited resources
in a dynamic game with a limited number of observations. On
the other hand, humans are able to combine only a rough global
representation with local perceptual information to make and
execute accurate decisions. In the future, we can expect robots
to play on fields with varying sizes and incomplete features, e.g.,
two backpacks marking a goal, as in the “Any Place Challenge”
in RoboCup SPL in 2014. We propose an approach based
on anticipation and internal simulations that combines global
information about the robot’s location with local perception to
enable accurate decisions despite inaccuracies in self-localization.

Index Terms—decision-making, anticipation, self-localization,
local perception

I. SELF-LOCALIZATION IN ROBOCUP

Self-localization has been an integral part of RoboCup
Soccer and mobile robots in general since the beginning of
robotics research. It has been studied in RoboCup soccer since
the very beginning [1], [2].

It seems natural that a robot needs to know its location in
the environment to navigate and perform tasks. An explicit
representation of the robot’s position seems convenient and
universal. Because of its universality and convenience, self-
localization is often used as a central point of the robot’s
behavior and as a basis for global and local decisions.

This demands the self-localization to be both - stable
regarding the integration of percepts from different modalities
over longer periods of time and accurate to enable fine-
grained local decisions. Trying to accommodate both demands
is challenging and might lead to either inconsistency in self-
localization or low fidelity in local navigation due to inaccurate
estimation of the robot’s global position.

This issue has been extensively studied from different
perspectives: alternative state space representation and explicit
detection of inconsistencies [3], [4], questioning of the Marcov
Assumption [5], analyzing and finding more stable sensor
models [6], and studying geometric stability of landmarks [5],
[7] and more recently [8].

Typically, the self-localization in RoboCup SPL is based on
particle filters (Monte Carlo approximations) [1], [2], [9], [10]
or Multi-Hypothesis approaches [11] and [12].

Of course, higher precision and robustness can be achieved
with more sophisticated approaches that would require a
significant expansion of the state, e.g., memorizing past lo-
cations and considering correlations between individual ob-
servations, similar to approaches like Graph-Based SLAM
or approaches based on Deep Neural Networks. While such
methods are available, they come with a significantly increased
complexity in implementation and computational effort, and
the fundamental question remains unanswered: do we need
(an accurate) localization to make accurate decisions?

The classical view on predictive reasoning in space is
planning. In the well-known book “Planning Algorithms” [13],
LaValle remarks that many tasks can be achieved without
knowing the exact state. On the other hand, humans are able to
realize accurate behavior by combining rough cognitive maps
for global decisions [14] and accurate perceptual maps for
local decisions.

We will demonstrate that an accurate representation of the
robot’s location is not necessary to make stable decisions, and
show that stable and accurate behavior can be realized with
simple methods like Monte-Carlo sampling and only rough
approximations of motion and sensor models. We will split
the task of representation of the environment into local and
global contexts. With this self-localization, we can focus on
a stable estimation of the robot’s location with low accuracy
requirements. We will reformulate the task of the global model
from the estimating robot’s global position to identification



Fig. 1.
possible ball positions after a left (yellow) and right (red) sidekick, and the
forward kick (cyan).

Simulation of three different kicks: sampled distributions of the

(classification) of the local context. Our preliminary experi-
ments indicate that this division can significantly improve the
stability of the robot’s decisions.

II. PREDICTIVE DECISION-MAKING BASED ON INTERNAL
SIMULATION

This section briefly summarizes a decision approach based
on anticipation and internal simulation discussed in [15], [16].
The algorithm was tested in simulation and real games and is
being used in games by the team Berlin United in the SPL
league.

The approach was implemented to decide on a kick direc-
tion. Figure 1 illustrates an example situation where the ball
is located in front of the robot, and the robot needs to select
between the three possible kick actions - kick forward, left, or
right.

The decision scheme consists of three different phases:
predict, evaluate and select.

a) Predict: For each kick, the robot simulates possible
final locations of the ball after the kick is executed. The
simulation approximates a kick model with a Monte-Carlo
sampling and a rudimentary physical simulation of the ball. It
captures only the essential aspects: the final location of the ball
and collisions, which are assumed to be non-elastic. The task
of the simulation is to capture the essence of the uncertainty
in the kick action in a local situation.

b) Evaluate: The results of the simulation of each action
are evaluated according to two separate models: (1) a value
function that captures the global static aspects of the game,
e.g., closer to the goal is better, and (2) the likelihood of
discrete events own goal, opponent goal, out, field, explicitly
capturing the local situation. The value function is computed
as an expected value over all samples of the action. The
likelihood of the events is computed as a relative frequencys;
for this, each sample is classified and counted.

c) Select: The selection uses the likelihoods of discrete
events to reject actions with a high likelihood of scoring an
own goal or the ball leaving the field and to select an action
that is likely to score a goal. If the decision cannot be made

. °
° ° &
o L= .}’....0
Je

Fig. 2. Left: outer field line, seen by the robot’s camera; Right: local view
of the robot with the projections of detected lines and predicted results of the
kicks (left - blue, right - green, forward brown)

based on the local decision model, then the expected value is
used to decide on an action.

ITII. LOCAL AND GLOBAL EVALUATION

In this section, we propose an extension to the predictive
decision approach

In the decision approach introduced in the previous section,
both steps of the evaluation — the value function and the event
likelihoods — are estimated using a global model (the robot’s
location on the field and the map). The estimation of event
likelihoods captures the local situation and needs to be as
accurate as possible, while the value function captures the
global aspects, like the geometry of the field and the general
strategy, and can be approximate. Thus, it makes sense to
compute the value function based on the global model (robot’s
position on the field) and estimate the likelihood of the events
based on a more accurate model of the local situation. This
would require a specific model for such objects as a goal
and lines, which can be challenging and would introduce an
additional level of complexity. Instead, we propose to classify
the individual simulated particles based directly on visual
perception.

Figure 2 illustrates the first experiments demonstrating the
approach. The decision of whether a ball (particle) crossed a
line can be made on the visual perception of a line. The line
can be classified based on the global model (self-localization)
to decide which line it is. The self-localization does not need to
be precise for the correct classification of the local perception,

IV. DISCUSSION

In the proposed approach, we decouple the decision-making
from the global model. Local decisions such as “ball over
a line” or “ball inside goal” can be made based on local
perception alone. A global model is necessary to classify the
local perception and to evaluate the predictions when no clear
event can be predicted, i.e., the ball stays within the field.
Both tasks do not require precise self-localization. Resulting
in a stable and precise decision scheme. Experiments with
different situations on the field are being carried out.
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