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Abstract—Multi-agent decision making for autonomous robot
soccer presents unique challenges, including real-time coordi-
nation, adaptive strategies, and efficient collaboration under
dynamic conditions. In this work, we introduce a novel sampling-
based algorithm designed to enable a team of humanoid robots
to cooperatively coordinate during a soccer match. Our method
solves via distributed optimization a mathematical representation
of the problem, computing velocity references from generalized
cost functions via gradient descent. It enables dynamic team
coordination, adaptive offensive and defensive strategies, and
quick responses to changing scenarios. Our method generalizes
to any number of robots and has shown significant improvements
in game-play and agent cooperation compared to standard
state machine approaches. Simulation and hardware deployments
further demonstrated robust performance with limited informa-
tion and low-latency updates. We believe our work should lay
the foundations for reliable and interpretable decision-making
algorithms for multi-robot cooperation in real world.

Index Terms—Multi-Robot Coordination, Robot Planning,
Collective Behavior

I. INTRODUCTION

To achieve autonomy in the domain or RoboCup (RC)
Soccer, three main components are needed: i) the percep-
tion module, gathering information about the robot state and
the environment, ii) the behavior module, processing this
information in order to enable high-level decision-making,
and iii) the motion control module, converting the high-level
commands into joint trajectories. Our work focuses on the
behavior component of such a complex software stack. This
is traditionally addressed via State Machines (SMs) as shown
in [1]: driven by pre-defined transitions, the robot’s behavior
evolves through different states, each associated with a set
of actions. While being effective and easy to implement,
such a solution restricts the ability of the robot to deal
with unforeseen scenarios, and results particularly limiting
for multi-agent decision-making. Alternative solutions based
on distributed optimization exist [2], [3], able to include
global information [4] and intra-robot communication [5] for
better cooperation. Our work builds on top of the Feedback
Equilibrium Seeking (FES) algorithm [6], [7], which extends
Feedback Optimization (FO) [8], [9] to drive multi-robot
systems. This method solves the optimal problem iteratively,
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Fig. 1. Optimized robot trajectories. The goalkeeper (red) protects the goal
based on the current ball position. The purple robot follows the shortest path to
the ball. The other agents optimize the full set of costs, with defensive robots
attracted by the opponents, while offensive ones aiming for free ranges.

in closed loop with the physical system. Compared to other
approaches, this guarantees increased robustness to sensor
noise, model uncertainty and environment disturbances.

Contributions

In this work, we propose a Gradient Descent (GD)-based
algorithm controlling the poses of a robotic team in both
offensive and defensive scenarios, steered to ensure optimal
poses based on the current players’ configuration on the field.
Making use of FES, it provides velocity references leveraging
both local and global information.

II. PROBLEM FORMULATION

Given an agent i ∈ {1, . . . , N}, and its state xi[k] =[
pxi [k], p

y
i [k]

]⊤
, we define its discrete time dynamics as a point

mass with input ui[k] =
[
vxi [k], v

y
i [k]

]⊤
. Each agent beside

the goalkeeper is dynamically assigned with a different role
Ri[k] ∈ R = {BF,FC,BS} accounting for to the global team
state. Robots’ roles are chosen among Ball Follower (BF),
Field Covering (FC) and Ball Searcher (BS) at run time.
Offensive and defensive tasks are assigned based on the current
position only. We order all the active agents into time-varying
teammates Atm[k] and opponents Aop[k] index sets with the
related state and role sets:

XAtm/op
[k] =

{
xi[k] | i ∈ Atm/op[k]

}
,

RAtm [k] =
{
Ri[k] | i ∈ Atm[k]

}
.



III. PROPOSED APPROACH

By using the FES algorithm [7] we compute ui[k] for each
agent i with GD:

ui[k] = −α∇xi
Ui

(
Ri[k], XAtm

[k], XAop
[k], xball[k]

)
, (1)

where Ui is the agent-specific cost, conditioned on the robot
role Ri, the robots’ states and the ball position xball. Figure 1
shows an exemplary result of the closed-loop behavior. The
agent-specific cost at each step k is computed as the sum of:

Collision Avoidance: To discourage collisions with I =
{Aop, Atm}, we use a Gaussian penalty:

UCA

(
xi, xI

)
=

αCA√
2πσCA

∑
j∈I,j ̸=i

exp

(
− ∥xi − xj∥2

2σ2
CA

)
. (2)

Ball Following: The BF role is assigned to the agent
”closest in time” to the ball, using an MPC optimization. For
this robot only, we penalize the distance from the estimated
ball position, using the Huber-like cost (H), as proposed
in [10], to mitigate local minima effects:

UBF

(
xi, xball

)
= H

(
xi − xball

)
= αBF

(√
∥xi − xball∥2 + βBF −

√
βBF

)
.

(3)

Field Coverage: A good strategy is to explore the field as
much as possible. This is achieved by defining a Gaussian
coverage function at each field position r, centered on each
robot xi:

g(r, xi) =
1√

2πσFC

exp

(
− ∥r − xi∥2

2σ2
FC

)
, (4)

and integrating their differences over the field to penalize
agents too close to each other:

UFC

(
xi, xAtm

)
=

−αFC

∫ xub

xlb

∫ yub

ylb

∑
j∈Atm,j ̸=i

g(r, xi)− g(r, xj)dr.
(5)

This cost inherently encodes repulsion from the field bound-
aries (xlb, xub, ylb, yub). It is computed by sampling discrete
locations on the field, then used for the GD optimization.

Cooperative Behavior: To cooperatively attack or defend,
the distance between the active teammates’ center of mass and
the ball position is penalized:

UCB

(
xAtm

, xball

)
= αCB

∥∥∥∥
∑

i∈Atm
xi

|Atm|
− xball

∥∥∥∥2. (6)

This aggregative term inspired by [4], coupled with UFC ,
allows the robots to strategically position on the field.

Fig. 2. 2D (left) and 3D (right) cost functions for the purple robot. We show
the full cost for a 5vs5 scenario.

Offensive and Defensive Bias: Inspired by football tactics,
we aim at tailoring the behavior to the field location. To let
attackers pursuing the free space and defenders preventing
goals, we include a Gaussian cost whose peak’s sign and bias
depend on the opponent’s position:

UB

(
xi, xAop

)
=

− 1√
2πσB

∑
j∈Aop

αB(xj)exp

(
− ∥xi − xj − βB(xj)∥2

2σ2
B

)
.

(7)
If the opponent is in our half, the peak αB

(
xj

)
is negative

and the 2D shift βB

(
xj

)
is on the segment connecting the

opponent and the goal center. Otherwise the peak is positive
and the shift is zero. The overall cost can be seen in fig. 2.

IV. RESULTS

The method, initially evaluated in a custom 2D Matlab
simulation, has been deployed in a RC 3D simulator and on
real robots. In the 3D simulator, we played matches against a
baseline SM positioning behavior. The optimal coordination
allowed to win on 75% of the scenarios, with an average
controlled field, described via Voronoi regions [11], of 63%. It
also considerably reduced the distance covered by each robot,
hence limiting potential falls. The algorithm demonstrated
good sim-to-real transfer, with adaptability to the changing
environment. Operating in closed loop with the real system,
the approach was robust to state estimation noise, delayed
communication and temporary failures.

V. CONCLUSION

We presented a sampling-based algorithm which enables
humanoid robots to perform team coordination during a foot-
ball match. By optimizing velocity commands through GD
on generalized cost functions, the method promotes adap-
tive strategies and adjustment to changing scenarios. The
approach generalizes to any number of robots and maintains
its properties even with limited information access and low-
latency updates. It demonstrated improvements over standard
state-machine approaches in both simulation and hardware
implementations. Despite being more generalizable than SM,
this method relies on cost tuning in order for the desired
behavior to emerge. While a Multi-Agent Reinforcement
Learning (MARL) method with sparse rewards may potentially
alleviate this problem, we believe model-based optimization
provides more guarantees and a more interpretable behavior
for deployment in real scenarios.
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