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Abstract—We discuss the significance of utilizing a standard 
humanoid robot platform to achieve the ultimate goals of the 
RoboCup initiative. Additionally, we provide a detailed 
overview of our Teen-Sized humanoid robot, Booster T1, along 
with a description of our RL-based locomotion framework. 
Finally, we outline our exciting and ambitious future research 
plans for humanoid robot soccer to attract more teams to 
participate and be interested in our work. 
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I. INTRODUCTION  
The ultimate goal of the RoboCup initiative is to achieve, 

by the middle of the 21st century, a team of fully autonomous 
humanoid robot soccer players that can win a soccer match 
under official FIFA rules against the  World Cup 
champions[1]. According to the roadmap for the humanoid 
league[2], the 11v11 matches for humanoid robots will 
commence in a few years. Key research themes for the league 
include high-speed locomotion, powerful kicks, practical 
throw-ins, enhanced perceptual abilities, and intelligent 
teamwork. However, assembling a team of 11 appropriately 
sized humanoid soccer robots may exceed the budgets of 
many universities, and training on an entire field poses 
logistical difficulties due to space constraints. To address 
these issues, we propose using a standard humanoid robot 
platform to organize soccer competitions, facilitating 
cooperation and the development of joint teams in the future. 
Essential requirements for these standard humanoid robots 
include advanced perception, mobility, ball control skills, and 
intelligence. 

This paper introduces our innovative Teen-Sized 
humanoid robot, Booster T1. This robot, designed to embody 
the intelligence necessary for a soccer robot, solves the 
challenges of assembling a team of 11 appropriately sized 
humanoid soccer robots. We will provide a comprehensive 
understanding of its unique hardware features, mobility, and 
dexterity, showcasing its potential contributions to robotics 
and artificial intelligence.  

II. DESCRIPTION OF BOOSTER T1 

A. Robot Specifications 
The Booster T1 robot consists of a head, torso, arms, and 

legs, with 23 degrees of freedom, allowing for flexible 
movement, as shown in Fig.1.  The specifications of the robot 
are depicted in Table I.  

 
Fig. 1. Booster T1 

TABLE I Hardware Specifications 
Height(m)  1.18 

Weight(kg) 30 

DOF 23 

Forward Speed(m/s) 1.2 

Rotation Speed(rad/s) 1.5 

working hour(h) 1.5 

charging time(h) ≤2 

CPU i7 *1 

GPU AGXOrin*1 

Camera binocular depth camera 

Audio Microphone, speakers 

Wireless E-Stop Yes 

Wireless network WIFI 6 

The comparison between T1 and NAO， which is 
currently used in RoboCup SPL, is shown in Table II. 

TABLE II Comparison between  T1 and NAO 
 Booster T1 SoftBank NAO 

Height(m) 1.18 0.58 

Weight(kg) 30 5.48 

DOF 23 25 

Forward Speed(m/s) 1.2 0.3 

working hour(h) 1.5 1.0 

CPU i7 *1，4.8GHz ATOM*1，1.9G 

GPU AGXOrin*1,200TOPS None 

Camera binocular depth camera 2D cameras*2 

Joint Control Mode Position Mode 
Torque Mode 
Position Velocity Torque 
PID Mode 

Position Mode 



As shown in Table II, Booster T1 has the advantages of 
computing power, mobility, and joint control, which are the 
key features for soccer competition with AI. 

B. AI-oriented computing system 
In recent years, deep learning and LLM approaches have 

revolutionized many areas of Artificial Intelligence, which 
requires great computing power and multimodal data 
processing capability. T1's computing system, OneBox, is 
specifically designed for algorithm deployment of embodied 
intelligence. OneBox has three features as follows: 

• A variable topology network based on a PCle bus 
supports the full interconnection of heterogeneous 
computing units, which includes X86(I7) and 
GPU(AGX Orin). 

• A synchronized mechanism between physical 
simulation engines and heterogeneous computing 
platforms using a distributed clock to evaluate 
hardware-aware algorithms online accelerates the Sim-
To-Real deployment process. 

• A distributed network based on a high-speed ethernet 
bus to connect diverse actuators and sensors. 

III. REINFORCEMENT LEARNING PIPELINE  
We developed a reinforcement learning (RL) pipeline for 

the Booster T1 robot. This pipeline features a flexible RL 
training toolkit based on PyTorch and Isaac Gym and a C++ 
deployment of the policy using Eigen. This enables us to train 
controllers for locomotion skills and achieve zero-shot sim-to-
real transfer. 

A. RL Training Toolkit 
Our toolkit provides essential utilities for reinforcement 

learning (RL) algorithms, such as data collection, statistics 
recording, and classic algorithm functions, without pre-
defined training procedures. Users must design their model 
structures and write training code, but the toolkit is compact 
and can be mastered in under an hour, enabling the efficient 
creation of complex training processes. The toolkit includes a 
simulated training environment based on Isaac Gym, 
employing domain randomization to address the sim-to-real 
gap. Users can customize observations, actions, and rewards, 
making it an ideal starting point for developing RL 
environments. 

B. On-board Deployment 
We deploy our policy on a 4.8 GHz Intel i7 CPU, utilizing 

the Eigen library for matrix computations. This configuration 
is efficient enough to support real-time inference for small 
policy models. 

C. Push-Recovery Policy 
We deployed a push-recovery policy for the Humanoid 

League's Technical Challenge, effectively withstanding 
impacts of 22.5 Ns from both front and back, achieving the 
highest contest score. The training follows the ARMA 
framework, incorporating a traditional actor-critic model and 
two encoders for privileged information and observation 
history. The training consists of three phases: 

• Joint training of the actor and privileged information 
encoder using RL, facilitating quick convergence. 

• Fixing the trained actor and privileged information 
encoder while training the observation history 
encoder through supervised learning. 

• The observation history encoder's output is used as 
input for the actor, jointly trained with RL before real 
robot deployment. 

The policy encourages adherence to a periodic reference 
stepping trajectory, allowing dynamic adjustments in stepping 
speed. Disturbances simulate the impact of a heavy object by 
altering the robot's linear and angular velocity. Observations 
include proprioceptive sensor readings and reference 
trajectory phases, with typical gait periods around 0.7 seconds, 
decreasing to 0.5 seconds during severe disturbances. The 
robot can endure impacts of up to 30 Ns from the front and 
over 40 Ns from the back, although it tends to lean backward 
when deployed, increasing the risk of falling.. 

D. Locomotion Policy 
We used the same three-phase training procedure to train 

a locomotion policy that achieves a walking speed of 1.2 m/s. 
In the final phase, we integrated the World Model Denoiser 
structure, adding a privileged information decoder to enhance 
training efficiency. 

IV. BASIC SKILLS WITH HIGH DEXTERITY 
Robots may experience control failures or unintended falls 

in complex environments, making autonomous fall recovery 
appealing. We demonstrate the robot's getting-up motion, 
which consists of multiple joint-level trajectories. The 
flexibility of the hip joints is utilized to raise the torso and 
position the center of mass above the support polygon of the 
feet. 

The robot also can flip over when lying on its back, 
benefiting from the extensive range of motion in its waist joint. 
With these two basic motions, we can easily design a 
controller that enables the robot to stand up from any fallen 
position. 

With the ability to get up, intentional falling behaviors 
become feasible. We showcase the robot's getting-down 
motion, essentially the reverse of the getting-up motion. 
Additionally, we have planned a push-up motion, where the 
robot first squats down to assume a push-up position and then 
performs repeated push-ups. Through the combination of 
flipping over and getting up, the robot can independently 
execute these motions. 

V. FUTURE RESEARCH ON THE HUMANOID SOCCER GAME 
Booster T1 enables greater computing power in robots, 

paving the way for more learning-based techniques in 
RoboCup games, resulting in more human-like and 
entertaining matches. Our platform, equipped with robust 
computing capabilities and developer-friendly training 
frameworks, will soon facilitate: 

• Learning-based walking: Implementing stable, fast, 
and resilient gaits in-game strategies. 

• Vision-integrated techniques: These techniques 
simplify ball handling for RoboCup teams through 
commands for dribbling, shooting, and saving, all 
trained in a simulated environment. 

• End-to-end game training: Allowing two teams to 
train directly against each other in simulation or real 



environments, with learning managing localization, 
navigation, and strategy.. 

VI. CONCLUSION 
This paper introduces Booster T1, a Teen-Sized humanoid 

robot with hardware details and an RL-based locomotion 
framework. This standard platform enhances the mobility and 
intelligence of soccer robots for RoboCup participants while 
simplifying application development with RL and LLMs. The 
advantages of the standard platform make team cooperation 
easier, and a joint-team match will be exciting. An 11Vs11 
match of humanoid robots will be organized nearly. 

A demonstration of the locomotion and push recovery 
policies on Booster T1 is shown in the following link: 
https://youtu.be/b-wKLEJXnIk. 
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