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Department of Informatics

University of Hamburg
Hamburg, Germany

jasper.gueldenstein@uni-hamburg.de

2nd Jianwei Zhang
Department of Informatics

University of Hamburg
Hamburg, Germany

Abstract—Selecting and executing dynamically feasible foot-
steps on a bipedal robot while efficiently navigating toward a goal
pose is a complex optimization problem. Many approaches have
been proposed, such as end-to-end planning, velocity tracking
using machine learning, and discretization methods. This paper
proposes a policy trained using deep reinforcement learning
that selects footsteps to be executed by a walking engine. It
outperforms a previously successfully used baseline in a simulated
environment.

Index Terms—Footstep planning, Humanoid robots, Bipedal
robots, Legged robots, Robot learning, Deep reinforcement learn-
ing

I. INTRODUCTION

Selecting and placing dynamically stable footsteps is vital
for the robust navigation of legged robots. Furthermore, the
footstep placement must be selected to navigate towards a
defined goal pose efficiently. Many approaches have been
proposed to solve this problem. Haarnoja et al. [1] proposed
an end-to-end learned approach to soccer-playing robots.
However, this approach relies on external motion tracking
and, due to its end-to-end nature, does not allow the use of
navigation capabilities only. Lee et al. present an approach
for a quadruped robot only relying on proprioceptive sensor
information which generates foot trajectories in Cartesian
space [2] in unknown environments. The controller is trained
in simulation and deployed on multiple similar real robots.
While this approach shows impressive performance, the policy
is controlled with commanded velocities, requiring additional
planning for efficient navigation toward a goal pose. Footstep
planning is calculating a set of steps to allow a legged robot
to walk toward a goal pose while avoiding obstacles. Finite
transition sets have been proposed to solve this problem [3],
[4]. Often, these approaches do not consider the robot’s
dynamic state.

The approach presented in this paper learns which footsteps
are dynamically stable for a given walking engine [5] on a
humanoid robot used in the RoboCup KidSize league [6].
We use deep reinforcement learning in simulation to generate
footsteps, allowing the robot to navigate toward a goal pose
while remaining stable.

Fig. 1: Visualization of the simulated robot executing navi-
gation using the policies actions. The green arrow shows the
robot’s current pose. The goal pose is marked as a red arrow.

II. APPROACH

Our approach uses a reinforcement learning setup training
a policy using PPO [7] implemented in stable baselines 3 [8].
The following sections describe the setup briefly.

a) Environment: The environment uses Webots [9] as a
rigid body simulator. A visualization of the environment is
presented in Figure 1. At the beginning of an episode, the
goal pose is sampled from a normal distribution around the
robot’s starting pose. In each step of the episode, the robot
walks a double step as the policy selects. The joint positions
commanded to PID controllers in the simulated actuators are
generated by the walking engine [5] throughout the double
step. The episode ends when the robot reaches the goal pose
or falls.

b) Observation: The agents’s observation consists of the
goal pose relative to the robot and the robot’s alignment
towards the goal. The exact encoding of this information
is presented in Figure 2. Furthermore, two previously taken
actions by the policy are provided. Gaussian noise modeling
the localization pipeline’s performance is applied to the mea-
surement for some evaluations.

c) Policy: The policy presented in Figure 2 consists of
an MLP with two hidden layers of 64 neurons each. Its outputs
are the parameters of a beta distribution for each variable
and, therefore, normalized. A distribution is required for the
stochastic on-policy training of PPO [7]. The inference is
deterministic as the maximum of the distribution is selected.
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Fig. 2: Structure of the policy. d is the Euclidean distance
between the robot and the goal pose. α is the angular distance
between the robot and goal orientations. β is the angle
distance between the robot orientation and a vector from the
robot position to the goal position. The outputs are the two
parameters of a beta distribution for each variable.

d) Action: The policy’s output (i.e., the action) are the
poses of the next two footsteps. It is scaled to the experimen-
tally verified kinematic capabilities of the step length of the
used robot.

e) Reward Function: Shaping rewards are used to guide
the agent towards reaching the goal pose. The overall reward
function is as follows:

r(t) = sd · rd(t) + sa · ra(t) + so · ro(t) + sc · rc(t) (1)

Table I shows the scalars and formulas for the individual
reward terms.

Term Scalar
rd(t) = exp(−0.5 · d) sd = 0.3

ra(t) = exp(−5 · d) · exp(−1 · |α|) sa = 0.3

ro(t) =

{
exp (−1 · |β|) d ≥ 0.1m

1 d < 0.1m
so = 0.2

rc(t) = mean (exp (−3 · ∥a(t)− a(t− 1)∥)) sc = 0.2

TABLE I: Reward function terms. The variables d, α, and β
are explained in Figure 2. The distance reward rd encourages
the agent to move close to the goal. The angle reward ra
incentivizes the agent to align with the goal’s orientation when
close in Euclidean distance. The orient to goal reward ro
encourages the agent to face the goal pose while navigating
towards it. The continuity reward rc penalizes large changes
in footstep length from one action to another to reduce
accelerations.

III. EVALUATION

The policy was trained for 1,000,000 steps. It is compared
to a baseline developed by the RoboCup Team Hamburg Bit-
Bots [10]. We generated a set of 500 goal poses for evaluation.
Navigation was performed by the policy and the baseline with
and without artificial measurement noise. A trial is considered
successful if the goal pose is approached to a distance of
0.05m in the Euclidean distance and 10◦ angular distance.

Approach Success Timeout Fall Success Time [s]

without noise ours 0.98 0.0 0.02 6.07 ±2.13
baseline 0.96 0.032 0.008 11.13 ±4.95

with noise ours 0.978 0.0 0.022 6.35 ±2.23
baseline 0.91 0.078 0.012 11.43 ±5.11

TABLE II: Results of our policy and baseline in the experi-
ments with and without artificial noise added to the measure-
ments. The standard deviation is given for the success time.

Fig. 3: Footstep positions produced by the baseline (left) and
our approach (right). The left and right footsteps are marked
as green and red arrows, respectively. The pose of the robot’s
torso projected on the ground is marked in black. Our policy
plans much larger steps and approaches the goal pose more
effectively than the baseline.

Furthermore, after 100 s of simulated time the attempt is
ended. Table II presents the results.

The policy outperformed the baseline and showed higher ro-
bustness to measurement noise. Time for successful navigation
was 54.5% and 55.6% of the baseline approach. However, the
robot fell 1.83 to 2.5 times more often when controlled by the
policy. The cases in which the policy-controlled robot fell were
still few with 2% and 2.2%, respectively. The robot platform
is capable of standing up, which was not considered in these
experiments. Figure 3 shows an example of the produced steps.

IV. CONCLUSION AND FUTURE WORK

This work outlines foundational work for developing a deep
reinforcement learned policy that exploits a walking engine’s
capabilities while remaining stable. Significantly better results
compared to a baseline were achieved in a simulated envi-
ronment. Further work is required to transfer the results to
the real world. We plan to incorporate domain randomization,
such as varying the robot model’s parameters and artificial
disturbances. More accurate modeling of the robot’s actuators
could also ease transfer. Furthermore, including proprioceptive
sensor information in the policy input (e.g., IMU or derived
orientation measurement) may improve performance. Obstacle
avoidance could be approached by introducing intermediate
goals on a conventionally computed path. Furthermore, sta-
bilization techniques applied by the walking engine, such
as elongating or ending a step prematurely based on IMU
information, have proven effective in real-world applications.
Integrating this into the policy is nontrivial but planned.
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