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Fig. 1: An example of FootstepNet use – Step 1: A bipedal robot
must score a goal while minimizing its number of steps. To do this,
we arbitrarily choose nalt placement possibilities (here nalt = 3)
which all allow scoring. Step 2: Forecasting allows choosing from
the nalt possibilities, the one that requires the fewest steps. Step
3: The planner compute all the steps in order to go to the position
chosen by the forecast. Step 4: The step sequence is executed on
the real robot.

I. INTRODUCTION

Designing a humanoid locomotion controller is challenging and
classically split up in sub-problems. Footstep planning is one of
those, where the sequence of footsteps is defined. Even in simpler
environments, finding a minimal sequence, or even a feasible
sequence, yields a complex optimization problem. In the literature,
this problem is usually addressed by search-based algorithms (e.g.
variants of A*). However, such approaches are either computation-
ally expensive or rely on hand-crafted tuning of several parameters.
In this work, at first, we propose an efficient footstep planning
method to navigate in local environments with obstacles, based on
state-of-the art Deep Reinforcement Learning (DRL) techniques,
with very low computational requirements for on-line inference.
Our approach is heuristic-free and relies on a continuous set of
actions to generate feasible footsteps. In contrast, other methods
necessitate the selection of a relevant discrete set of actions. Second,
we propose a forecasting method, allowing to quickly estimate the
number of footsteps required to reach different candidates of local
targets. This approach relies on inherent computations made by the
actor-critic DRL architecture. We demonstrate the validity of our
approach with simulation results, and by a deployment on a kid-size
humanoid robot during the RoboCup 2023 competition.

II. PROBLEM STATEMENT

Footstep planning consists in computing the footstep sequence
such that the robot can move from an initial position to a target
location efficiently and safely, all while avoiding obstacles and
adhering to the physical limitations of the robot’s mechanics and its
environment. This is a critical aspect of bipedal humanoid robotics.

In this paper, we are interested in footstep planning within a two-
dimensional (2D) framework. By constraining our consideration
to the 2D pose of the robot—defined by coordinates (x, y) and
orientation (θ) in a planar domain—we simplify the inherently
complex problem of navigation in three-dimensional space. This
approach allows us to effectively decompose the robot’s trajectory
into a series of planar movements. However, with the minimization
of the number of footsteps in mind, local navigation can yield
complex maneuvers as presented in Fig. 2.
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Fig. 2: Example of footsteps generated by FootstepNet planning.

III. METHOD

We define a footstep as ϕ = (f, x, y, θ), where f ∈ {left, right}
indicates a specific foot and x, y and θ are the position and the
orientation of the foot1. The robot state can be described with the
footstep of its current support foot ϕr = (fr, xr, yr, θr). In case
of double support, the choice of the support foot is arbitrary.

A footstep displacement ∆ϕ = (∆x,∆y,∆θ), is parametrized
as on Fig. 4. It describes the pose of the swing foot in the frame of
the support foot. When a support swap occurs, the swing foot be-
comes the new support foot, producing a new footstep. A sequence
of footsteps can then be built from successive displacements, which
defines the trajectory.

The displacements are bound in a feasible set ∆ϕ ∈ F because
the robot has a limited workspace.

An obstacle is defined as o = (xo, yo, ρ), where xo and yo are the
position of the center of the obstacle and ρ is its radius. A collision
between a footstep and an obstacle occurs if the rectangular support
footstep intersects the circular obstacle.

Given a target ϕt = (ft, xt, yt, θt), the goal of the footstep
planning problem is to find a sequence Φp = (ϕr, ϕ2, . . . , ϕt)
such that displacements are feasible, and with minimal length |Φp|.
This problem is non-linear because of the possible rotations of the
robot. It also has non-convex constraints because of the obstacle
avoidance, but also possibly because of the shape of F . For those
reasons, there are no known closed-form solutions.

We formulate it as an MDP which has a concise state and
action spaces. This MDP is designed to have a reasonable training
time using state-of-the art DRL algorithms. The trained agent has
very fast on-board inference time, taking advantage of all modern
hardware acceleration for neural network inferences.

1Unless specified otherwise, all the quantities are expressed in an inertial
world frame attached to the ground
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Fig. 3: Overview of the proposed method – First, offline training is carried out during which the agent learns the policy by interacting
with the RL environment. During online inference, we then use the trained networks to, on the one hand, estimate the number of steps
using the critic and, on the other hand, to determine the sequence of steps to be performed using the actor.

Fig. 4: Parametrization of a footstep displacement (∆x,∆y,∆θ).
The displacement is a pose expressed in the frame of the support
foot, with an implicit offset of fdist in the y direction.

Moreover, taking advantage of the actor-critic architecture, the
critic network is also an outcome of the RL optimization process.
Since our reward lead to meaningful return unit (approximating
|Φp|), the critic can also be deployed on the robot to perform
footstep forecasting. We believe this approach produces a useful
building block for the whole locomotion controller.

The MDP formulation is as follows:
1) State-space: A state s ∈ S = R8 is a tuple:

s = (1fr=ft , xt, σ(yt), cos(θt), σ(sin(θt)), xo, σ(yo), ρ), (1)

where 1 is the indicator function : 1fr=ft taking the value of 1 if
the robot support foot fr is the target support foot ft, and 0 else.

The quantities xt, yt, θt, xo and yo are expressed in the support
foot reference frame when included in s. This allows for the current
footstep ϕr to be omitted, reducing the state space dimensionality.
Moreover, the σ(y) operator, defined by σ(y) = y if fr = right
and σ(y) = −y else, allows to handle the symmetry of the problem.

2) Action-space: An action a ∈ A = R3 is a tuple: a = ∆ϕ, as
specified in Fig. 4. The actions are clipped to lie in the feasible set
F . After applying back the symmetry operator σ on ∆y and ∆θ,
such a displacement can be integrated to obtain a new footstep.

3) Reward and termination: The reward function is expressed
as:

R(s) = −1− w1δp − w2δθ − w31s∈C , (2)

where δp and δθ are respectively the distance and absolute ori-
entation error between the current and the target footstep. 1s∈C

indicates if the current state is in a collision with the obstacle, C
being the set of states in collision. 0 ≤ w1, w2 ≪ 1 are reward-
shaping weights intended to guide the learning and w3 is a penalty
weight. Every step taken in collision is the equivalent of taking w3

extra steps, which is prohibitive for w3 ≫ 1. Reaching the target
footstep, within a fixed tolerance yields a terminal state (which is
equivalent to a subsequent return of 0).

The return obtained from a given state can be interpreted as the
(negative) approximation of the number of footsteps required to

reach the target. Given that the critic is an approximation of this
return, it can then provide an estimation of the sequence length |Φp|,
which is useful for upstream decision-making. For this reason, the
simplicity of the reward function is a key feature of FootstepNet.
This approximation is valid if the shaping weights w1, w2 are small,
and if the discounting factor γ is close to 1.

The sequence of planned footsteps Φp = (ϕr, ϕ1, ϕ2, . . . , ϕH)
can then be obtained by evaluating recursively the policy with a
target horizon H . We call this process a roll-out of the policy. In
practice, the size of the horizon H can be selected to produce the
relevant number of footsteps for downstream whole-body planning
and control. Alternatively, it is possible to apply this roll-out
fully until the target is reached. |Φp| then becomes the number
of required steps to reach the target. However, this requires one
inference per footstep and is thus costlier than using the critic-based
estimation.

IV. EXPERIMENTATIONS AND CONCLUSION

The comprehensive evaluation and deployment of FootstepNet
have underscored its effectiveness and efficiency as a planner in
bipedal robotics, particularly in comparison to the state-of-the-art
ARA* planner. Through experimentation under various scenarios
(detailed here2), including obstacle navigation and target reaching,
FootstepNet has consistently demonstrated superior performance,
achieving equal or better results 99% of the time, while boasting
significantly lower execution times (ARA*: 5s/path vs FootstepNet:
45µs/step). The utilization of DRL with a continuous set of footsteps
not only streamlines the planning process but also obviates the
need for selecting a discrete footsteps set, a notable advantage
over traditional methods. Additionally, the accurate forecasting
capability of FootstepNet, as evidenced in both experimental setups
and real-world competition scenarios such as RoboCup 2023 (that
we won scoring 95 goals and taking only 2), highlights its potential
for enhancing decision-making in robotics, enabling quick and
reliable movements essential for success in dynamic environments.

FootstepNet represents a significant step forward in the domain
of footstep planning, combining speed, efficiency, and accuracy
in a manner not previously achieved by existing planners, to
our knowledge. Its success in both controlled experiments and
competitive environments attests to its utility and potential for
broader applications.

Additionally, we provide a complementary video3 about Foot-
stepNet and demonstrates its application on a Sigmaban bipedal
robot.

2https://arxiv.org/pdf/2403.12589
3https://youtu.be/EL1rJh45vug
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