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Abstract— Humanoid robotics faces significant challenges
in achieving stable locomotion and recovering from falls in
dynamic environments. Traditional methods, such as Model
Predictive Control (MPC) and Key Frame Based (KFB) rou-
tines, either require extensive fine-tuning or lack real-time
adaptability. This presentation introduces FRASA, a Deep Re-
inforcement Learning (DRL) agent that integrates fall recovery
and stand up strategies into a unified framework. Leveraging
the Cross-Q algorithm, FRASA significantly reduces training
time and offers a versatile recovery strategy that adapts to
unpredictable disturbances. Comparative tests on Sigmaban
humanoid robots demonstrate FRASA superior performance
against the KFB method deployed in the RoboCup 2023 by the
Rhoban Team, world champion of the KidSize League.

I. INTRODUCTION

Humanoid robotics has made significant strides in recent
years, driven by advancements in both hardware and machine
learning. One of the key challenges in this field is developing
robots that can autonomously perform complex tasks, includ-
ing locomotion, in dynamic and unpredictable environments.
Reinforcement Learning (RL) has emerged as a powerful tool
for addressing these challenges, enabling robots to learn from
interactions with their environment and have more adaptive
responses.

Achieving stable locomotion is one of the primary obsta-
cles, if not the greatest, in humanoid robotics. The difficulty
of this task arises primarily from the limited number of
ground contact points for a humanoid, which results in an
inherently unstable standing pose. Moreover, a high Center
of Mass (CoM) increases the risk of damage in the event of a
fall for humanoid robots. This leads researchers to prioritize
fall prevention over recovery.

The proposed approach does not focus on the problem of
push recovery but rather on fall recovery, which involves
creating new points of contact with the ground as a strategy
to regain stability in minimal time. The approach usually
used in robotics competitions is to wait for the fall to end
before starting a stand up routine, generally based on key
frame animations. This method is simple to implement but
lacks versatility, requires extensive fine-tuning, and must be
frequently adjusted due to motor wear and loss of precision.

In this presentation, we introduce a Fall Recovery And
Stand up Agent (FRASA) that integrates both fall recovery
and stand up strategies into a single agent, aiming to resume
walking as fast as possible after a disturbance. The adaptative
response allowed by FRASA in the case of backwards and
frontwards disturbances is presented in Fig. 1.

1Univ. Bordeaux, CNRS, LaBRI, UMR 5800, 33400 Talence, France.

1 432

1 432

Backwards Disturbance

Frontwards Disturbance 

Fig. 1. FRASA adaptative response to a backwards and a frontwards
disturbances on the Sigmaban platform. The recovery behavior using the
arms accelerates the return to a stable position while minimizing the risk
of damage.

The key contributions of FRASA are:
• Unified task handling: The proposed reward function

enables the DRL agent to efficiently address both fall
recovery and stand up tasks within a unified framework.

• Reduced training time: By leveraging the Cross-Q
algorithm, FRASA achieves effective training in signif-
icantly less time compared to existing RL approaches.

• Versatile and adaptative recovery strategy: The use
of a DRL agent allows adaptation to unpredictable real-
world feedback and recovery from various postures
without the need for expert tuning.

Tests are conducted on Sigmaban humanoid robots to
compare FRASA with a Key Frame Based (KFB) approach.
The KFB method used for comparison was deployed in the
RoboCup 2023 by the Rhoban Team, world champion of the
KidSize League. Real robots experiments are presented in
the following video1.

II. EXPERIMENTS

To validate the performance of FRASA in a real environ-
ment, we deploys it on the Sigmaban robotic platform.

A. Stand Up Experiment
A first experiment is conducted to compare the ability

to stand up from prone and supine positions using both a

1https://youtu.be/NL65XW0O0mk

https://youtu.be/NL65XW0O0mk


KFB recovery process and FRASA. A KFB stand up method
defines arbitrary key positions determined thanks to expert
knowledge for the robot to pass through, interpolating motor
positions between them to create a stand up trajectory. The
KFB method used in the experiments was developed for
RoboCup 2023 by the Rhoban Team and demonstrated both
its effectiveness and efficiency.

The robot is placed on its back and face down, aiming to
stand and begin walking. The metric studied is the time from
movement initiation to the start of walking. To initiate walk-
ing, the error in the state vector components—comprising the
5 controlled joints and the trunk pitch—must remain below
5° for 0.5 seconds.

B. Fall Recovery Experiment

A second experiment compares the recovery ability of the
KFB process and FRASA after being pushed from a static
standing pose. The setup, shown in Fig. 2, uses a pendulum
mechanism to release a mass from varying distances onto the
robot in a repeatable manner. A cord allows retrieval of the
weight post-impact, preventing interference during recovery.
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Fig. 2. Experimental setup for inducing repeatable disturbances

In this experiment, the robot is placed under the pendulum
and subjected to repeated disturbances with varying impact
intensities. After a disturbance, the robot waits to return to
a stable position close to the target posture before beginning
to walk in place.

The metric studied is the duration of disturbance rejection.
Time measurement begins when any value in the state vector
deviates by more than 5° from the neutral walking posture
values. Once in this unstable state, all values in the state
vector must have an error of less than 5° relative to the target
posture for 0.5 s for the robot to be considered stable again
and able to initiate walking. The time measurement ends at
the beginning of the walking phase.

III. RESULTS

The stand up experiment is conducted by performing the
stand up task 20 times for each side and each method. The
average stand up times are presented in Table I. We observe
that FRASA outperforms the KFB method in both possible
configurations: FRASA completes the stand up from the
supine position in 53% and from the prone position in 68%

of the time required by the KFB method. This corresponds to
average gains of 2.38 seconds and 1.02 seconds, respectively.

TABLE I
COMPARISON OF AVERAGE STAND UP TIMES FOR FRASA AND KFB

METHOD FROM PRONE AND SUPINE POSITIONS

Prone position Supine position

Method FRASA KFB FRASA KFB

Average Time / s 2.135 ±0.042 3.154± 0.005 2.678 ±0.178 5.06± 0.008

The standard deviation is represented using the notation ±

The results of the fall recovery experiment are detailed in
Table II. Each configuration of distance, method, and side is
repeated 10 times, and the mean instability time is calculated.
An estimate of the kinetic energy transferred at the moment
of impact is calculated by considering the pendulum weight
as a point mass. The weakest backwards disturbance does
not cause any imbalance in the robot.

TABLE II
COMPARISON OF AVERAGE INSTABILITY DURATIONS OF FRASA AND

THE KFB METHOD AFTER DISTURBANCES

Frontwards Disturbance Backwards Disturbance

d / m 0.56 0.75 0.89 0.75 0.89
Energy / J 4.0 5.5 7.3 5.5 7.3

FRASA / s 0.54± 0.02 2.41 ±0.04 2.44 ±0.03 0.62± 0.10 2.26 ±0.11
KFB / s 0.57± 0.02 5.96± 0.11 5.74± 0.05 0.49± 0.10 4.47± 0.23

The standard deviation is represented using the notation ±

In all configurations, FRASA achieves comparable or
shorter instability times than the KFB method. The only
configuration where the KFB method has a lower mean
instability time than FRASA is for a 5.5J disturbance from
the back. However, the standard deviation ranges for the
two methods overlap, indicating that the difference is not
statistically significant.

For the most significant impacts (d = 0.89m representing
7.3J), FRASA is able to reject the disturbance in 42% of the
time required by the KFB method for a front impact and in
51% of the time for a back impact. FRASA also demonstrates
superior performance for 5.5J frontwards disturbance, where
the return to stability takes only 40% of the time compared
to the KFB method.

Overall, FRASA demonstrates its superiority both in re-
jecting significant disturbances and in recovering from a
prone or a supine position, surpassing the KFB method.

IV. CONCLUSION

Experiments on the Sigmaban platform demonstrate
FRASA’s superiority over the KFB method in both standing
up and fall recovery, achieving these tasks with increased
efficiency.

To further enhance FRASA’s performance, a promising
direction would be to finalize its training directly on the
robot (online) to potentially reduce the sim-to-real gap.
Additionally, improving the modeling of actuators in our
simulator could help bridge this gap even further.
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