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Abstract—This work presents a comprehensive pipeline for
kinematic state estimation of humanoid robots in the RoboCup
competition. The dynamic and sensor-limited environment of
RoboCup poses significant challenges for accurate state estima-
tion, including unstable walking surfaces, frequent collisions, and
restrictions on external sensing modalities like LiDAR and GPS.
To address these challenges, we propose an integrated approach
that combines odometry, visual localization, and optimization
techniques, all designed for real-time performance on resource-
constrained hardware.

I. INTRODUCTION

For a humanoid robot, locomotion involves controlling the
unactuated floating base to a desired location in the world.
Before a control action can be applied, an accurate estimate
of the position and orientation of the floating base is required.
In the context of Robocup, the artificial grass surface and
collisions with other robots complicates stable walking, mak-
ing state estimation challenging due to falls, noise and drift
over time. Furthermore, external sensors that could enhance
state estimation, such as LiDAR or GPS, are prohibited in
the RoboCup Humanoid League [1]. As a result, robots must
rely solely on sensors such as cameras, IMU’s and force
sensors, adding to the complexity of state estimation. An
overview of the commonly used frames of reference used
in the Robocup competition is provided in Figure 1. In the
context of the Robocup competition, kinematic state estimation
can be broken down into two major areas

• Odometry: Estimation of the robots pose with respect
to an inertial world frame W

• Localization: Estimation of the robots pose with respect
to the soccer field frame F

Fig. 1. Common landmarks and frames of reference for state estimation in
the Robocup competition

Odometry is often tackled through the use nonlinear ob-
servers that fuse leg odometry and Inertial Measurement Unit
(IMU) measurements [2]. In this work we present a very
simple but practical and effective method for Odometry. Vari-
ous localization techniques have been developed for RoboCup
soccer, including Kalman Filters [3] and Monte Carlo Local-
ization [4]–[6]. These localization methods typically rely on
visual landmarks as measurement inputs [7], [8]. While effec-
tive, these computer vision pipelines can be computationally
expensive, affecting real-time performance. To mitigate this,
we present methods for accurate visual landmark detection,
which can run in real-time on resource constrained hardware.
Additionally, we present a novel approach for localization us-
ing the detected visual landmarks, a combination of nonlinear
optimization and Kalman filtering.

II. ODOMETRY

Since the contact configuration of a robot during walking
is always changing, we construct a representation of the
system in a general World-fixed inertial frame. We consider
two reference frames: World-fixed (W-frame) inertial frame
attached to the ground and body-fixed (B-frame) frame rigidly
attached to the robot midway between the robots hip yaw
joints. The homogeneous transformation matrix capturing the
relationship between these frames is given by
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where Rw
b ∈ SO(3) is the rotation matrix from the body frame

B to the world frame W , and rwB/W ∈ R3 is the position vector
of the body frame B with respect to the world frame W . To
estimate the orientation of the floating base body frame B,
we use the Mahony Filter [9], a simple and efficient approach
for real-time attitude estimation. For convenience, the IMU is
located near the body frame B. The Mahony filter has only
two tuning parameters, the PI compensator gains, Kp and Ki,
making the tuning process straightforward. In addition, we
estimate the floating base translation rWB/W using the anchor
point strategy. We select an anchor point A, located on the
robots foot sole and assume that this point is grounded at
position rWA/W in the world frame whenever it serves as the
support foot. In the floating-base frame B, the position rBA/B

of this anchor point is known through forward kinematics
allowing continuous tracking of the floating base translation
relative to the world frame. Each time the support foot changes
during walking, detected using kinematic thresholds on the



relative z height of the feet, the anchor frame is updated to
the new support foot. Additionally, this method provides an
estimate of the floating-base yaw orientation which is fused
with the Mahony filter yaw estimation to reduce drift.

III. VISUAL LANDMARK DETECTION

Our localization approach relies on visual landmarks de-
tected using two computer vision methods: YOLOv8n [10]
and the Visual Mesh [11]. We use YOLOv8n, a state-of-the-
art real-time object detection model, to identify objects and
key landmarks. Simultaneously, the Visual Mesh serves as
a highly efficient semantic segmentation network specifically
tuned for detecting field lines. Table I summarizes the fea-
tures detected by each method. The landmarks used in the
localization pipeline include YOLOv8n-detected goal posts,
T, L, and X intersections, and field line points detected by
the Visual Mesh. To evaluate the computational performance
of these approaches, we benchmarked them on two hardware
platforms: a simulation laptop equipped with an Intel i7-
11850H processor and integrated UHD GPU, and real robot
hardware featuring an Intel i7-1260P processor and Iris™ Xe
GPU. Table II presents the results, highlighting the achieved
frame rates on each platform.

Without loss of generality, through a combination of our
camera model and the extrinsic matrix Hc

b, the pixel-based
detections can be projected onto the field plane. A detection
in world space r̂wO/W ∈ R3 is given by
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where uc
O/C ∈ R3 is the unit vector associated with a pixel

obtained through our camera model, rwC/W ∈ R3 is the
position of the camera in the world frame, Rw

c ∈ SO(3) is
the rotation matrix from the camera frame to the world frame,
and e3 ∈ R3 is the basis vector [0, 0, 1]⊤.

IV. LOCALIZATION

The localization problem can be formulated as estimating
the pose of the field relative to the world frame. Due to the
flat nature of the soccer field, this can be fully described by
the transformation

Hf
w(x) =


cos θ − sin θ 0 x
sin θ cos θ 0 y
0 0 1 0
0 0 0 1

 (3)

where x = [x, y, θ]⊤ ∈ R3 is a vector containing the x-
y translation and yaw rotation. We propose a localization
method leveraging nonlinear optimization to compute the
optimal state x in real-time. Nonlinear optimization techniques
have recently gained popularity in robot localization due
to their superior performance compared to traditional filter-
based approaches [12]. Our framework employs the derivative-
free algorithm COBYLA [13] (Constrained Optimization BY
Linear Approximations), integrating multiple cost components
and constraints. The optimization problem is given by

x∗ = argmin
x

J(x)

s.t. xmin ≤ x ≤ xmax

(4)

where xmin,xmax ∈ R3 are the lower and upper bounds on the
state vector x. The overall cost function J(x) is defined as

J(x) = wflJfl(x) + wlmJlm(x) + wscJsc(x) (5)

where wfl, wlm and wsc are scalar weights assigned to each
component.

Field Line Alignment Cost: Jfl(x) measures how well the
observed field line points align with actual field lines, given
by

Jfl(x) =

Nfl∑
i=1

dmap
(
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w
i

)2
(6)

where Nfl is the number of observed field line points, r̂wi ∈
R3 represents the i-th field line point in the world frame,
transformed into the field frame via Hf

w(x)
−1, and dmap is

a function which provides the distance to the nearest field line
using a precomputed distance map.

Landmark Cost: Jlm(x) assesses the alignment of observed
field line intersections (T, L, and X intersections) and goal
posts with known positions on the field, given by

Jlm(x) =

Nlm∑
i=1
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where Nlm is the number of associated landmarks, rf
i ∈ R3

is the known position of the i-th landmark in the field frame,
and r̂wi ∈ R3 is the observed position of the i-th landmark in
the world frame.

State Change Cost: Jsc(x) penalizes significant deviations
from the prior state estimate, given by

Jsc(x) = ∥x− x0∥2 (8)

where x0 ∈ R3 is the prior state estimate (initial guess), and
x is the current state estimate being optimized. This cost term
ensures that the optimizer does not produce abrupt changes in
the estimated state between consecutive frames unless strongly
supported by the observations.

After each optimization step, the solution x is filtered
using a standard Kalman filter. This filtering step smooths the
state estimates over time, improving robustness against noisy
observations and enhancing the stability of the localization
results. We evaluated the performance of our algorithm using
a ground truth dataset collected in the Webots simulation
environment [14]. Table III shows the Root Mean Square Error
(RMSE) between the estimated poses and the ground truth for
various methods and algorithm variations. Notably, our method
that incorporates all cost terms with Kalman Filtering achieves
the lowest errors. On average, the optimization routine and
filtering step take only 2 milliseconds to complete.
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TABLE I
FEATURES DETECTED BY YOLOV8N AND VISUAL MESH

YOLOv8n Features Visual Mesh Classes
Ball Ball
Robots Robots
Goal Posts Goal Posts
T Intersections Field Line
L Intersections Field
X Intersections Environment

TABLE II
FPS PERFORMANCE OF YOLOV8N AND VISUAL MESH

Method Sim (i7-11850H) [FPS] Robot (i7-1260P) [FPS]
YOLOv8n 47 66
Visual Mesh 152 259

TABLE III
RMSE ERROR BETWEEN ESTIMATED AND GROUND TRUTH POSE IN

ROBOCUP WEBOTS SIMULATION ENVIRONMENT

Method x [m] y [m] yaw [deg]
Particle Filter 0.0563 0.0890 1.6180
NLopt (field lines only) 0.0503 0.0563 0.8389
NLopt (field intersections only) 0.0629 0.0617 1.7125
NLopt (goal posts only) 0.9085 0.1239 2.5690
NLopt (all cost terms without KF) 0.069 0.0995 0.8730
NLopt (all cost terms) 0.0500 0.0559 0.8273


